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An Apparent Anomaly in the Group and Energy

Veloc
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ty in a Dielectrically Loaded
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Summary—This paper is concerned with group and energy veloc-

ity in a cylindrical guide periodically loaded with dielectric dkks.
For a TM wave a confluence maybe obtained between the first and
second pass band of such a structure by arranging that the character-
istic impedances of the air and dielectric regions are equal when the
phase change per section is ~.

It was at first thought that, since the impedances are equal, there
would be no reflections from the interfaces. Assuming only forward
waves, however, the equivalence of group and energy velocity is

violated.

The detailed analysis presented here shows that, mathematically,

infinitely many solutions for the field pattern at the matched r mode

are possible but that only one of these has physical significance. For

thk one pattern the group and energy velocities are equal.

INTRODUCTION

I

T IS well known that slow-wave structures, as used

in electron tubes and wave filters, are inherently

dispersive, that is, the velocity of propagation of

phase is dependent upon frequency.1 In discussing the

performance of such structures a knowledge of this de-

pendence is essential.

Wave propagation in periodic structures is charac-

terized by the fact that the total wave can be regarded

as a system of space harmonics, or component waves,

each having a different phase velocity. The phase

propagation constants of the components are related

in a simple way, differing from each other by an integral

multiple of 27r/L where L is the periodic length. Thus

if ~. is the propagation constant of the nth space

harmonic

2rr9a
P)z=Bo+y)

where /?O is the propagation constant of a reference

space harmonic.

Since space harmonics cannot exist independently,

it is improper to refer to a phase velocity when describ-

ing the total wave disturbance. It may be noted, how-

ever, that the quantity d(3/dti is the same for all space

harmonics and hence may be used to describe the dis-

persive character of the structure.
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1J. A. Stratton, “Electromagnetic Theory, ” McGraw-Hill Book
Co., Inc., New York, N. Y., ch. 5, sect. 5.14; 1941.

The term group velocity has been given to the quan-

tity du/d~ and it is customary to refer to the group

velocity of wave propagation in a periodic structure in

this way. For the purpose of this paper no other signif-

icance is attached to the term group velocity, and the

phrase is used in this limited sense only.

The historical use of the term group velocity relates

to the propagation of a wave packet; that is, a group of

waves contained within a narrow frequency band. If

du/dff is not a constant over this frequency band, a

degeneration of the wave packet will result and it be-

comes difficult to ascribe a velocity to the packet. z

A quantity of physical importance is the velocity of

propagation of energy along the structure. This also

requires careful definition. By analogy with fluid flow,

energy velocity may be defined as the ratio energy flux

per unit area and per unit time, divided by the energy

density. In the case of a periodically loaded waveguide,

time average values of these quantities are used and the

energy velocity is taken as the ratio of the time average

power flux across any section of the guide to the mean

stored energy per unit length of the guide, that is,

VE =
1 s+-(eEE* + pHH*)dv ‘

T

where the integration in the numerator is over a section

of the guide and the integration in the denominator is

over the volume of one period.

An important theorem, for which proofs have been

given by J. S. Be113 and D. A. Watkins,4 states that in

any lossless periodically loaded waveguide the group

velocity and the energy velocity are equal. This theorem

is only applicable when the loading obstacles consist of

either metal or nondispersive dielectric materials. The

case of dispersive media has recently been discussed by

Tonning.5

2 R. B. Adler, et al., “Electromagnetic Energy Transmission and
Radiation, ” John Wiley and Sons, Inc., ch. 5, sec. 2.2; 1960.

‘J. S. Bell, “Group Velocity and Energy Velocity in Periodic
Waveguides, ” Atomic Energy Research Establishment, Harwell,
England, AERE Rept. T/R 858:1952.

~ D. A. Watkins, “Topics m Electromagnetic Theory, ” John
Wiley and Sons, Inc., New York? N. Y., ch. 1, sec. 5; 1958.

6 A. Tonning, “Energy density in continuous EM media, ” IRE
TRANS. ON ANTENNAS AND PROPAGATION, vol. AP-8, pp. 428-434;
July, 1960.
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An apparent anomaly in the equivalence of group and

energy velocity was noted in recent work by the authors

in relation to waveguides loaded with disks of non-

dispersive dielectric material. The resolution of the

anomaly has an important bearing on the understanding

of pass-band confluence and is discussed here in some

detail.

THE MATCHED 7r MODE

In the dielectricall y loaded structure shown in Fig. 1,

for the TMOI mode, a confluence may be obtained be-

tween the first and second pass bands.

At a frequency j~, given by

jm .f,/fl,

C?

where f, = the air cutoff frequency,

and

q = c2/el,

the characteristic impedance of the dielectric and air

regions will be equal. ” If the dimensions are chosen such

that the phase change per section ~ is equal to m at the

matching frequency fm, then confluence of the pass

bands will be obtained. Match can only occur at one

frequency so that only one pair of pass bands can be

made confluent.

E

z
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Fig. l—Circular guide periodically loaded with clielectric disks.

Since the impedances of the two regions are equal, it

would appear that a wave may travel down the struc-

ture with no reflections occurring at the interfaces. This

being so there are no backward waves and the energy

velocity in either region is the energy velocity for a

single wave in that medium. It happens that for both

regions v~ = cj ~~ + c,, so that this is also the value for

the over-all structure. To obtain the group velocity the

deterrninantal ecluation has to be differentiated twice

(1’H6pital’s rule); the value obtained is not equal to

~E. For e,= 93.5, fm = 2998 Mc, and a periodic length of

5 cm ( =kJ2) the energy velocity is 3,1 X 107 m/see

and the group ve[ocity, 6.8X 107 m/see.

e G. B. Walker and N. D. West, “Mode separation at the r-mode
in a dielectric loaded waveguide cavity, ” Proc. IEE, vol. 104, p. 381,
1957; Monograph No. 228R, March, 1957.

If the dimensions are such that 4#r at the matching

frequency, then group and energy velocity both have

the value c/~l+q.

The discrepancy, therefore, only occurs when the

match condition and the ~ mode occur simultaneously.

ANAL%”srs OF THE GENERAL STRUCTURE

A circular guide loaded with dielectric disks is shown

in Fig. 1, where the even-numbered regions are dielec-

tric disks of permittivity CZ and the odd-numbered re-

gions are air spaces. We may determine the field pat-

terns for a TMO1 mode in this structure by matching

fields at the boundaries of any one region.

The waves that may be set up in the air and dielectric

regions may be found using Maxwell’s equations, and

for the TMO1 mode are

In the dielectric region (2), and

in the air region (3), where

(3)

where S1 is the first root of JrO(P) = O, and .4, B, C, and

D are related constants.

Using Floquet’s theorem the field in region (4) is

given by (1) multiplied by e–~+, where * is the phase

change per section to be determined.

Matching fields at z = O anc[ z =P we obtain,

where 201 is the phase change in the air region, ~lp,

and 202 is the phase change in the dielectric region,

~Zq. For these equations to have a unique solution,

I A –i32 –B1 PI I
~2 ~2 —cl —fl

~2ei(282-*) ._~2e-i(2a2+*) _,3,e-2W +~1e2201 = Q“ (5)
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Expanding and using the fact that the wave im-

pedance Z is, for a TIM mode, equal to fl/we, we obtain?

1 ~ + ~ sin 20~ sin 20Q[1 .. (6)Cos + = .Cos 201 Cos 202 – y ~, ~1

We can find the relative values of A, B, C, and D by

taking the first three equations of (4),

[

B2 –P2 –k

1[
AID

62 C2 —cl B/D 1
p2~7(292-*)–p2~-i(292+*) – ple-2j01 C/D 1

-[ 1
–@l

. +q . (7)

Simplifying these equations, we obtain

ZI
cos 291+ j — sin 201 — e–jf28Z+$J

A eleiti Z2
—— _— .

D q Z2
ei(*–2i+1) — cos Z02 — j ~ sin 2%2

Al
z,

cos 201—j — sin 201 — e~12H2–*)
B ele~$ Z2
— —— —.
D Z2‘2 ej(+zal) — ~os Z02 — j — sin 20:

z,

—
D Z2

e3 (*–2.91) – j ~ Sin 282 – COS 282

(8)

(9)

(lo)

Solving (6) for any particular structure, over a range

of frequency, shows that a dielectrically loaded struc-

ture acts like a band-pass filter, the nonpropagating or

stop bands occurring when I cos + I >1.

Figs. 2 and 3 show various dispersion curves using

the dimensionless parameters a/A, p/a, and q/a. By this

means the variable a is effectively eliminated. The

lowest value of a/k at which propagation will occur, is

approximately constant for a given value of ~/g, pro-

vided that @+g/a is small compared to A/a.

CONDITION FOR MATCH

For any transverse magnetic wave there is a fre-

quency at which the characteristic impedances of the

air and dielectrically filled guide are equal.

As stated earlier, this frequency is given by

(11)

7 Below air cutoff (31becomes

61’ = 4F– QAJq.

Eq. (6) may ke applied if 131and ZI are replaced by –j&’ and
—j~I’/ueI, respectively.
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Fig. 2—Dispersion. curves for, various ratios of air to
dielectric thickness.

i [R;DIAN5]

Fig. 3—Dispersion curves for various ratios of air to
dielectric thickness.

At this frequency @Z= e,~l and ZI = Zt so that from

(6), *= 201+ 20z. We expect no reflections in the system

and in general, this is true, there being no backward

waves B and D. From (8) and (10) the forward waves

are related simply by C= er.4. Since there is only a single

forward wave in either region, it is well known that

both VG and VE are equal to dm/dfl. For the air region

For the dielectric region

WE = ?IG

Since ~z = G,61, the

gions are equal, and

= dujdfiz = ,L3z/o)pe2. (13)

energy velocities in the two re-

using (3) and (1 1), are given by

c
?m= d=” (14)

Differentiation of (6) shows that the group velocity

for the composite structure is also equal to this value.

THE MATCHED r MODE

If we assume only A and C to exist at the matched

~ mode the energy velocity is given by (14), as above.

The group velocity however cannot be found by a

single differentiation of of (6) since both numerator and

denominator vanish for this case. 1’H6pital’s rule, how-
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ever, may be used to obtain

/ c’

ZI = Z2

[1+=T

VQ== /-[:%(’--:)12 ‘“)
Eq. (15) gives a value of ~G greater than the value

of VE by (14) due to the additional term in the denomina-

tor. This appears to contradict the proofs of Bell and

Watkins.

We can, however, view the problem in another way.

.4t the r point, (10) is indeterminate; it is, in fact,

possible to satisfy the boundary conditions with only

forward waves, only backward waves, or any combina-

tion of these waves, i.e., for any value of C/D. The

forward waves and the backward waves do not interact

as regards power flow, and from this poinr of view may

be regarded as distinct. The mean power flow will be

positive provided that C> D. The stored energy per

section, however, depends on all four waves taken to-

gether. The energy velocity, being dependent on the

ratio of these quantities, may thus have many values at

the ~ mode.

The ratio C/D may thus be chosen such that D does

not equal zero, C(ID having a finite value Calculations

fc)r a particular structure near to the ~ point, just above

and just below the matching frequency, shows that

C/D is continuous as the frequency changes through

the m point.

The value of C/D at the ~ point may be found by

differentiating numerator and denominator of (1 O) with

respect to u (1’ H6pital’s rule), giving

+=T

[1Z1 = Z2
(16)

where d#/dw can be found from (15) since d+jdu

‘vG/(~+~).

The value of C/D, for a structure using titanium

disks, is plotted against phase change per section in

Fig. 4. C/D is infinite when 20s is equal t o r, since for

this condition each disk behaves as a resonant window

and is reflectionless. The curve does not extend to the

lower values of ~, because (10) applies only above the

O;lH&’+L
“’”M’

Fig. 4—Dispersion curve and variation of I C/D 1, for a structure
matched at r mode. (f~ = 2998 Mc, @/a= 1.1766, g/a= 0.1228,
a=3.8479 cm, G =9.3. )

cutoff frequency, (a/A)., for the air region, The value

of C/D given by (16) agrees closely with that predicted

from calculation at nearby points.

The energy velocity using this value of C/D, with the

appropriate values of A/D and B/D, agrees closely with

the group velocity (15).

CONCLUS1ONS

For any system where the disks are matched but ~

does not equal T, the group velocity and energy velocity

are equal. There are no backward waves, and this is the

only possible solution.

If the disks are matched at the mathematically unique

~-mode frequency, any combination of forward and

backward waves is possible. From physical considera-

tions it might be thought that, again, the condition of

match implies no backward waves. Were this to be

so, any change in frequency, however small, would

cause an entirely different field pattern to be set up.

The equivalence proofs of Bell and Watkins both re-

quire that d F/r3w is continuous at the point considered,

F being any field vector.

It may be concluded, therefore, that the pattern

which in fact will exist at the matched m-mode fre-

quency, is that for which the ratio of the amplitudes

of the forward and backward waves suffer no discon..

tinuity with a small change in frequency [see (16)].

This is the only case for which ab/d~ has a meaning; the

concept of group velocity may be applied only in this

instance.
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