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An Apparent Anomaly in the Group and Energy
Velocity in a Dielectrically Loaded
Slow-Wave Structure*

G. B. WALKERY, axp C. G. ENGLEFIELDY, MEMBER, IRE

Summary—This paper is concerned with group and energy veloc-
ity in a cylindrical guide periodically loaded with dielectric disks.
For a TM wave a confluence may be obtained between the first and
second pass band of such a structure by arranging that the character-
istic impedances of the air and dielectric regions are equal when the
phase change per section is .

It was at first thought that, since the impedances are equal, there
would be no reflections from the interfaces. Assuming only forward
waves, however, the equivalence of group and energy velocity is
violated.

The detailed analysis presented here shows that, mathematically,
infinitely many solutions for the field pattern at the matched » mode
are possible but that only one of these has physical significance. For
this one pattern the group and energy velocities are equal.

INTRODUCTION

T IS well known that slow-wave structures, as used
]:{ in electron tubes and wave filters, are inherently

dispersive, that is, the velocity of propagation of
phase is dependent upon frequency.! In discussing the
performance of such structures a knowledge of this de-
pendence is essential.

Wave propagation in periodic structures is charac-
terized by the fact that the total wave can be regarded
as a system of space harmonics, or component waves,
each having a different phase velocity. The phase
propagation constants of the components are related
in a simple way, differing from each other by an integral
multiple of 2z /L where L is the periodic length. Thus
if B, is the propagation constant of the nth space
harmonic
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Bn = .80—[_

where f, is the propagation constant of a reference
space harmonic.

Since space harmonics cannot exist independently,
it is improper to refer to a phase velocity when describ-
ing the total wave disturbance. It may be noted, how-
ever, that the quantity dB/dw is the same for all space
harmonics and hence may be used to describe the dis-
persive character of the structure.
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The term group velocity has been given to the quan-
tity dw/dB and it is customary to refer to the group
velocity of wave propagation in a periodic structure in
this way. For the purpose of this paper no other signif-
icance is attached to the term group velocity, and the
phrase is used in this limited sense only.

The historical use of the term group velocity relates
to the propagation of a wave packet; that is, a group of
waves contained within a narrow frequency band. If
dw/dB is not a constant over this frequency band, a
degeneration of the wave packet will result and it be-
comes difficult to ascribe a velocity to the packet.?

A quantity of physical importance is the velocity of
propagation of energy along the structure. This also
requires careful definition. By analogy with fluid flow,
energy velocity may be defined as the ratio energy flux
per unit area and per unit time, divided by the energy
density. In the case of a periodically loaded waveguide,
time average values of these quantities are used and the
energy velocity is taken as the ratio of the time average
power flux across any section of the guide to the mean
stored energy per unit length of the guide, that is,

1
f 7ReE>< H*-dS
Vg = b

1 1
zf Z (eEE* + uHH*)dv

where the integration in the numerator is over a section
of the guide and the integration in the denominator is
over the volume of one period.

An important theorem, for which proofs have been
given by J. S. Bell® and D. A. Watkins,* states that in
any lossless periodically loaded waveguide the group
velocity and the energy velocity are equal. This theorem
is only applicable when the loading obstacles consist of
either metal or nondispersive dielectric materials. The
case of dispersive media has recently been discussed by
Tonning.?

2 R. B. Adler, et al., “Electromagnetic Energy Transmission and
Radiation,” John Wiley and Sons, Inc., ch. 5, sec. 2.2; 1960.
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Waveguides,” Atomic Energy Research Establishment, Harwell,
England, AERE Rept. T/R 858; 1952,

1 D. A. Watkins, “Topics in Electromagnetic Theory,” John
Wiley and Sons, Inc., New York, N. Y., ch. 1, sec. 5; 1958.

5 A. Tonning, “Energy density in continuous EM media,” IRE
TRANS. ON ANTENNAS AND PROPAGATION, vol. AP-8, pp. 428-434;
July, 1960.



1962

An apparent anomaly in the equivalence of group and
energy velocity was noted in recent work by the authors
in relation to waveguides loaded with disks of non-
dispersive dielectric material. The resolution of the
anomaly has an important bearing on the understanding
of pass-band confluence and is discussed here in some
detail.

THE MATCHED m MODE

In the dielectrically loaded structure shown in Fig. 1,
for the TMy mode, a confluence may be obtained be-
tween the first and second pass bands.

At a frequency f., given by

&+ 1
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€

where f, =the air cutoff frequency,

and
& = e/,

the characteristic impedance of the dielectric and air
regions will be equal.® If the dimensions are chosen such
that the phase change per section ¢ is equal to 7 at the
matching frequency f,, then confluence of the pass
bands will be obtained. Match can only occur at one
frequency so that only one pair of pass bands can be
made confluent.
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Fig. 1—Circular guide periodically loaded with dielectric disks.

Since the impedances of the two regions are equal, it
would appear that a wave may travel down the struc-
ture with no reflections occurring at the interfaces. This
being so there are no backward waves and the energy
velocity in either region is the energy velocity for a
single wave in that medium. It happens that for both
regions vz =c/+/1+¢, so that this is also the value for
the over-all structure. To obtain the group velocity the
determinantal equation has to be differentiated twice
(I'Hopital’s rule); the value obtained is not equal to
vg. For €,=93.5, f,=2998 Mc, and a periodic length of
5 cm {=\,/2) the energy velocity is 3.1 X107 m/sec
and the group velocity, 6.8 X107 m/sec.

6 G. B. Walker and N. D. West, “Mode separation at the =-mode
in a dielectric loaded waveguide cavity,” Proc. IEE, vol. 104, p. 381,
1957; Monograph No. 228R, March, 1957,
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If the dimensions are such that Y7 at the matching
frequency, then group and energy velocity both have
the value ¢/+/1+¢,.

The discrepancy, therefore, only occurs when the
match condition and the 7 mode occur simultaneously.

ANALYSIS OF THE GENERAL STRUCTURE

A circular guide loaded with dielectric disks is shown
in Fig. 1, where the even-numbered regions are dielec-
tric disks of permittivity e, and the odd-numbered re-
gions are air spaces. We may determine the field pat-
terns for a TMy, mode in this structure by matching
fields at the boundaries of any one region.

The waves that may be set up in the air and dielectric
regions may be found using Maxwell's equations, and
for the TMy; mode are

E, = (Ade 2 4 Betife?) Jo(xr) ]
B . {
E, = — (de 22 — Betibee) I (xr
3 !
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H¢ = (Ae"ﬂ“ + Be"‘”g”)fl(xr)
X

In the dielectric region (2), and

E, = (Ce#12 + Detit1) Jo(xr)
E, = ] (Cemibrz — Detibre) J,(xr)
X 0<z<5p (2
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in the air region (3), where
B = wlue — X%,
x = Si/a,
where Sy is the first root of Jo(p) =0, and 4, B, C, and
D are related constants.
Using Floquet's theorem the field in region (4) is
given by (1) multiplied by e, where ¢ is the phase

change per section to be determined.
Matching fields at z=0 and z= p we obtain,

B2d — BB — :C+ D=0
eed + B — ¢C — gD =0
By AeiP0r ) — B, Be=i(02td) — 3,201 L 8, De¥01 =
€a Aef 0 ¥) ¢y BemI20xH) — ,Cem%01 — ¢ De?i = 0 (4)
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where 20, is the phase change in the air region, S8ip,
and 26, is the phase change in the dielectric region,
Baq. For these equations to have a unique solution,

B2 — B —B1 B1

€2 €2 — €1 — €1 0 (5)
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Expanding and using the fact that the wave im-
pedance Z is, for a TM mode, equal to 8/we, we obtain’
v 20, cos 20 — — [Z1+ 22} in 26, sin 205, (6)
cosy = cos 26; cos 26, — — | — + — | sin 26, sin 20s.
. 1 2 2 Zz Zl 1
We can find the relative values of 4, B, C, and D by
taking the first three equations of (4),

B2 — B2 —B1 4/D
€2 €2 —€1 B/D
el (202—¥) 3, ,—7(20a+y) —261 C/D
Bae Bue Bre /
—B1
=| e (7
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Simplifying these equations, we obtain
20, + 5 2 sin 20 i0r+0)
cos —sin 20, — e~
A e T ST (8)
D e ) Ly,
e7¥—200 — cog 20, — 7 — sin 26,
1
cos 20 —j%1 sin 20, — 1029
B €167 9 (9)
D e Ly
¢! W20 — cos 26, — j — sin 20
Z 1
efWHie L 4 2 Sin 26, — cos 26,
C YA
= . (10)

.Z2 .
e =200 — j — sin 20, — cos 20,
Zy

Solving (6) for any particular structure, over a range
of frequency, shows that a dielectrically loaded struc-
ture acts like a band-pass filter, the nonpropagating or
stop bands occurring when | cos | > 1.

Figs. 2 and 3 show various dispersion curves using
the dimensionless parameters a/\, p/a, and g/a. By this
means the variable a is effectively eliminated. The
lowest value of a/N at which propagation will occur, is
approximately constant for a given value of p/q, pro-
vided that p+¢/a is small compared to A/a.

CONDITION FOR MATCH

For any transverse magnetic wave there is a fre-
quency at which the characteristic impedances of the
air and dielectrically filled guide are equal.

As stated earlier, this frequency is given by

& 1+ 1
/L
€r

7 Below air cutoff 8; becomes
B = VX — wluer.

Eq. (6) may Le applied if 8 and Z; are replaced by —iB:’ and
—7B1’ /wey, respectively,

(11)
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Fig. 2—Dispersion curves for various ratios of air to
dielectric thickness.
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Fig. 3—Dispersion curves for various ratios of air to
dielectric thickness.

At this frequency B:=e€81 and Z,=27, so that from
(6), ¥=120,+20,. We expect no reflections in the system
and in general, this is true, there being no backward
waves B and D. From (8) and (10) the forward waves
are related simply by C=¢.4. Since there is only a single
forward wave in either region, it is well known that
both ve¢ and vr are equal to dw/dB. For the air region

Vg = Vg = dw/d,Bl = 31/w,uel. (12)
For the dielectric region
Vg = Vg = dw/dﬂz = ﬂg/w,uég. (13)

Since B:=¢31, the energy velocities in the two re-
gions are equal, and using (3) and (11), are given by

. 4
w\/1+€r

Differentiation of (6) shows that the group velocity
for the composite structure is also equal to this value.

(14)
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If we assume only 4 and C to exist at the matched
7 mode the energy velocity is given by (14), as above.
The group velocity however cannot be found by a
single differentiation of of (6) since both numerator and
denominator vanish for this case. I'Hépital’s rule, how-
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ever, may be used to obtain

/ g
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Eq. (15) gives a value of 94 greater than the value
of v by (14) due to the additional term in the denomina-
tor. This appears to contradict the proofs of Bell and
Watkins.

We can, however, view the problem in another way.
At the 7 point, (10) is indeterminate; it is, in fact,
possible to satisfy the boundary conditions with only
forward waves, only backward waves, or any combina-
tion of these waves, 4.e., for any value of C/D. The
forward waves and the backward waves do not interact
as regards power flow, and from this poin: of view may
be regarded as distinct. The mean power flow will be
positive provided that C>D. The stored energy per
section, however, depends on all four waves taken to-
gether. The energy velocity, being dependent on the
ratio of these quantities, may thus have many values at
the = mode.

The ratio C/D may thus be chosen such that D does
not equal zero, C/D having a finite value. Calculations
for a particular structure near to the = poiat, just above
and just below the matching frequency, shows that
C/D is continuous as the frequency changes through
the 7 point.

The value of C/D at the m point may be found by
differentiating numerator and denominator of (10) with
respect to w (I'Hopital’s rule), giving

sin 26, 'e/pQ —1 4 [(P + Ve +1 + d_llf—J o291
C w €r

¢ dw
D sin 26, .5,2 -1 n [(P + Ve +1 d‘q 201

w € ¢ dw

-]
Z]_ = Zg
where dy/dw can be found from (15) since dy/dw
=v¢/(p+9).

The value of C/D, for a structure using titanium
disks, is plotted against phase change per section in
Fig. 4. C/D is infinite when 20, is equal to =, since for
this condition each disk behaves as a resonant window

and is reflectionless. The curve does not extend to the
lower values of ¥, because (10) applies only above the

(16)
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Fig. 4—Dispersion curve and variation of [C/D]|, for a structure
matched at = mode. (f,=2998 Mc, p/a=1.1766, ¢/a=0.1228,
a=3.8479 cm, ¢, =93.)

cutoff frequency, (a/N)., for the air region. The value
of C/D given by (16) agrees closely with that predicted
from calculation at nearby points.

The energy velocity using this value of C/D, with the
appropriate values of A/D and B/D, agrees closely with
the group velocity (15).

CONCLUSIONS

For any system where the disks are matched but ¢
does not equal 7, the group velocity and energy velocity
are equal. There are no backward waves, and this is the
only possible solution.

If the disks are matched at the mathematically unique
m-mode frequency, any combination of forward and
backward waves is possible. From physical considera-
tions it might be thought that, again, the condition of
match implies no backward waves. Were this to be
so, any change in frequency, however small, would
cause an entirely different field pattern to be set up.
The equivalence proofs of Bell and Watkins both re-
quire that d F/dw is continuous at the point considered,
F being any field vector.

It may be concluded, therefore, that the pattern
which in fact will exist at the matched w-mode fre-
quency, is that for which the ratio of the amplitudes
of the forward and backward waves suffer no discon-
tinuity with a small change in frequency [see (16)].
This is the only case for which dw/d has a meaning; the
concept of group velocity may be applied only in this
instance.
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